NLP自然语言处理系列- week7-指针网络(Pointer Networks Refinements to Beam search)
目录
指针网络(Pointer Networks)论文
https://arxiv.org/abs/1506.03134
我们引入了一种新的神经结构来学习输出序列的条件概率,这些元素是离散的符号,与输入序列中的位置相对应。这些问题不能用现有的方法(如序列到序列法和神经图灵机法)简单地解决,因为输出的每一步目标类的数量取决于输入的长度,而输入的长度是可变的。可变大小序列的排序问题以及各种组合优化问题都属于这类问题。我们的模型利用最近提出的神经注意机制解决了可变大小输出字典的问题。它与以前的注意力机制的不同之处在于,它不是使用注意力在每个解码器步骤中将编码器的隐藏单元混合到上下文向量中
本人从事大数据人工智能开发和运维工作十余年,码龄5年,深入研究Spark源码,参与王家林大咖主编出版Spark+AI系列图书5本,清华大学出版社最新出版2本新书《Spark大数据商业实战三部曲:内核解密|商业案例|性能调优》第二版、《企业级AI技术内幕:深度学习框架开发+机器学习案例实战+Alluxio解密》,《企业级AI技术内幕》新书分为盘古人工智能框架开发专题篇、机器学习案例实战篇、分布式内存管理系统Alluxio解密篇。Spark新书第二版以数据智能为灵魂,包括内核解密篇,商业案例篇,性能调优篇和Spark+AI解密篇。从2015年开始撰写博文,累计原创1059篇,博客阅读量达155万次