cs224u 自然语言推断:模型-3
__author__ = "Christopher Potts"
__version__ = "CS224u, Stanford, Spring 2020"
Sentence-encoding句子编码模型
现在我们来看看句子编码模型。它的特点是前提和假设在某种意义上有它们自己的表征,然后这些表征结合起来预测标签。Bowman等人2015年探索了这种形式的模型,作为介绍SNLI的一部分。
我们之前使用的前馈网络就是这个模型家族的成员:每个单词都被单独表示,这些表示的串联被用作模型的输入。
密集表示与线性分类器
最简单的句子编码模型对前提的单词表示及假设的单词表示求和(或求平均),将这两个表示连接起来用作线性分类器的输入。
下面是这个模型的实现,其中
- GloVe嵌入词向量
- 单词分布式表示求和。
- 将前提向量
本人从事大数据人工智能开发和运维工作十余年,码龄5年,深入研究Spark源码,参与王家林大咖主编出版Spark+AI系列图书5本,清华大学出版社最新出版2本新书《Spark大数据商业实战三部曲:内核解密|商业案例|性能调优》第二版、《企业级AI技术内幕:深度学习框架开发+机器学习案例实战+Alluxio解密》,《企业级AI技术内幕》新书分为盘古人工智能框架开发专题篇、机器学习案例实战篇、分布式内存管理系统Alluxio解密篇。Spark新书第二版以数据智能为灵魂,包括内核解密篇,商业案例篇,性能调优篇和Spark+AI解密篇。从2015年开始撰写博文,累计原创1059篇,博客阅读量达155万次