cs224u 自然语言推断:模型 nli_02_models.ipynb
__author__ = "Christopher Potts"
__version__ = "CS224u, Stanford, Spring 2020"
概述
本文定义并探索NLI模型:
- 基于稀疏特征表示的模型
- 线性分类器和使用密集特征表示的前馈神经分类器
- 递归树结构神经网络
尽管NLI是另一个分类问题,但输入具有重要的高层结构:一个前提和一个假设。这引发了对一系列神经模型设计的探索:
- 在句子编码模型中,前提和假设分别进行分析,仅在最后的分类步骤中结合。
- 在链式模型中,首先处理前提,然后处理假设,给出对两者的统一表示。
NLI类似于序列到序列的问题,如机器翻译和语言建模。建模的主要区别在于NLI不生成输出序列,而是使用两个序列来生成一个标签。尽管如此,这些领域之间还是有很多共同的想
本人从事大数据人工智能开发和运维工作十余年,码龄5年,深入研究Spark源码,参与王家林大咖主编出版Spark+AI系列图书5本,清华大学出版社最新出版2本新书《Spark大数据商业实战三部曲:内核解密|商业案例|性能调优》第二版、《企业级AI技术内幕:深度学习框架开发+机器学习案例实战+Alluxio解密》,《企业级AI技术内幕》新书分为盘古人工智能框架开发专题篇、机器学习案例实战篇、分布式内存管理系统Alluxio解密篇。Spark新书第二版以数据智能为灵魂,包括内核解密篇,商业案例篇,性能调优篇和Spark+AI解密篇。从2015年开始撰写博文,累计原创1059篇,博客阅读量达155万次