Pytorch+Google BERT模型(RoBERTa+LSTM+GRU)实战
BERT(Bidirectional Encoder Representations from Transformers)模型的前置基础知识,读者可以参阅以下的文章:
- Pytorch使用Google BERT模型进行中文文本分类(https://blog.csdn.net/duan_zhihua/article/details/85770837)
- BERT可视化工具bertviz体验(https://duanzhihua.blog.csdn.net/article/details/87388646)
- 论文 Attention Is All You Need (https://arxiv.org/pdf/1706.03762.pdf)
本案例实现RoBERTa+LSTM+GRU模型,根据互联网新闻文本标题及内容,判断新闻的情感极性(正面、中性、负面),对新闻文本进行分类。
本人从事大数据人工智能开发和运维工作十余年,码龄5年,深入研究Spark源码,参与王家林大咖主编出版Spark+AI系列图书5本,清华大学出版社最新出版2本新书《Spark大数据商业实战三部曲:内核解密|商业案例|性能调优》第二版、《企业级AI技术内幕:深度学习框架开发+机器学习案例实战+Alluxio解密》,《企业级AI技术内幕》新书分为盘古人工智能框架开发专题篇、机器学习案例实战篇、分布式内存管理系统Alluxio解密篇。Spark新书第二版以数据智能为灵魂,包括内核解密篇,商业案例篇,性能调优篇和Spark+AI解密篇。从2015年开始撰写博文,累计原创1059篇,博客阅读量达155万次